Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662644

RESUMO

Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.


Assuntos
Genótipo , Hordeum , Microbiota , Raízes de Plantas , Pseudomonas , Rizosfera , Hordeum/microbiologia , Hordeum/genética , Hordeum/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/fisiologia , Microbiota/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/fisiologia , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
2.
Plant Pathol ; 72(3): 536-547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516179

RESUMO

Crop diseases can cause major yield losses, so the ability to detect and identify them in their early stages is important for disease control. Deep learning methods have shown promise in classifying multiple diseases; however, many studies do not use datasets that represent real field conditions, necessitating either further image processing or reducing their applicability. In this paper, we present a dataset of wheat images taken in real growth situations, including both field and glasshouse conditions, with five categories: healthy plants and four foliar diseases, yellow rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to train a deep learning model. The resulting model, named CerealConv, reached a 97.05% classification accuracy. When tested against trained pathologists on a subset of images from the larger dataset, the model delivered an accuracy score 2% higher than the best-performing pathologist. Image masks were used to show that the model was using the correct information to drive its classifications. These results show that deep learning networks are a viable tool for disease detection and classification in the field, and disease quantification is a logical next step.

3.
Proc Natl Acad Sci U S A ; 119(16): e2123299119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412884

RESUMO

Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds­namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.


Assuntos
Vias Biossintéticas , Interações Hospedeiro-Patógeno , Doenças das Plantas , Triticum , Vias Biossintéticas/genética , Pão , Resistência à Doença/genética , Família Multigênica/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
4.
Cell ; 185(5): 761-763, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245479

RESUMO

Powdery mildew, a potentially severe crop disease, can be controlled by mlo mutations, which suppress fungal proliferation but typically also reduce yield. Li et al. (2022) demonstrate that productivity can be restored by overexpressing a host sugar transporter, thus offering a new option for economically and environmentally benign disease control.


Assuntos
Ascomicetos , Doenças das Plantas , Ascomicetos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
5.
PLoS Genet ; 17(4): e1009524, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872310

RESUMO

An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress.


Assuntos
Glucanos/genética , Pseudomonas aeruginosa/genética , Estresse Fisiológico/genética , Trealose/genética , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Vias Biossintéticas/genética , Glucanos/biossíntese , Interações Hospedeiro-Patógeno/genética , Humanos , Espectroscopia de Ressonância Magnética , Pressão Osmótica/fisiologia , Pseudomonas aeruginosa/patogenicidade
6.
Sci Total Environ ; 759: 143804, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33340856

RESUMO

Fungi living inside plants affect many aspects of plant health, but little is known about how plant genotype influences the fungal endophytic microbiome. However, a deeper understanding of interactions between plant genotype and biotic and abiotic environment in shaping the plant microbiome is of significance for modern agriculture, with implications for disease management, breeding and the development of biocontrol agents. For this purpose, we analysed the fungal wheat microbiome from seed to plant to seeds and studied how different potential sources of inoculum contributed to shaping of the microbiome. We conducted a large-scale pot experiment with related wheat cultivars over one growth-season in two environments (indoors and outdoors) to disentangle the effects of host genotype, abiotic environment (temperature, humidity, precipitation) and fungi present in the seed stock, air and soil on the succession of the endophytic fungal communities in roots, flag leaves and seeds at harvest. The communities were studied with ITS1 metabarcoding and environmental climate factors were monitored during the experimental period. Host genotype, tissue type and abiotic factors influenced fungal communities significantly. The effect of host genotype was mostly limited to leaves and roots, and was location-independent. While there was a clear effect of plant genotype, the relatedness between cultivars was not reflected in the microbiome. For the phyllosphere microbiome, location-dependent weather conditions factors largely explained differences in abundance, diversity, and presence of genera containing pathogens, whereas the root communities were less affected by abiotic factors. Our findings suggest that airborne fungi are the primary inoculum source for fungal communities in aerial plant parts whereas vertical transmission is likely to be insignificant. In summary, our study demonstrates that host genotype, environment and presence of fungi in the environment shape the endophytic fungal community in wheat over a growing season.


Assuntos
Microbiota , Micobioma , Endófitos , Fungos , Genótipo , Raízes de Plantas , Triticum/genética
7.
Plant Cell Environ ; 44(3): 807-820, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33179278

RESUMO

Circadian clocks have evolved to resonate with external day and night cycles. However, these entrainment signals are not consistent everywhere and vary with latitude, climate and seasonality. This leads to divergent selection for clocks which are locally adapted. To investigate the genetic basis for this circadian variation, we used a delayed fluorescence imaging assay to screen 191 naturally occurring Swedish Arabidopsis accessions for their circadian phenotypes. We demonstrate that the period length co-varies with both geography and population sub-structure. Several candidate loci linked to period, phase and relative amplitude error (RAE) were revealed by genome-wide association mapping and candidate genes were investigated using TDNA mutants. We show that natural variation in a single non-synonymous substitution within COR28 is associated with a long-period and late-flowering phenotype similar to that seen in TDNA knock-out mutants. COR28 is a known coordinator of flowering time, freezing tolerance and the circadian clock; all of which may form selective pressure gradients across Sweden. We demonstrate the effect of the COR28-58S SNP in increasing period length through a co-segregation analysis. Finally, we show that period phenotypic tails remain diverged under lower temperatures and follow a distinctive "arrow-shaped" trend indicative of selection for a cold-biased temperature compensation response.


Assuntos
Arabidopsis/genética , Ritmo Circadiano/genética , Genes de Plantas/genética , Loci Gênicos/genética , Proteínas de Arabidopsis/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Geografia , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética , Suécia
8.
Front Plant Sci ; 11: 155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210986

RESUMO

Important advances have been made in understanding the relationship of necrotrophic effectors (NE) and host sensitivity (Snn) genes in the Parastagonospora nodorum-wheat pathosystem. Yet much remains to be learned about the role of these interactions in determining wheat resistance levels in the field, and there is mixed evidence on whether breeding programs have selected against Snn genes due to their role in conferring susceptibility. SNB occurs ubiquitously in the U.S. Atlantic seaboard, and the environment is especially well suited to field studies of resistance to natural P. nodorum populations, as there are no other important wheat leaf blights. Insights into the nature of SNB resistance have been gleaned from multi-year data on phenotypes and markers in cultivars representative of the region's germplasm. In this perspective article, we review the evidence that in this eastern region of the U.S., wheat cultivars have durable quantitative SNB resistance and Snn-NE interactions are of limited importance. This conclusion is discussed in light of the relevant available information from other parts of the world.

9.
Plant Methods ; 15: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31548848

RESUMO

BACKGROUND: The growing field of plant molecular farming relies on expression vectors that allow high yields of recombinant proteins to be produced through transient gene expression. While numerous expression vectors currently exist for this purpose, there are very few examples of systematic efforts to improve upon these. Moreover, the current generation of expression systems makes use of naturally-occurring regulatory elements, typically selected from plant viruses, to maximise yields. This study aims to use rational design to generate synthetic sequences that can rival existing ones. RESULTS: In this work, we present the rational design of novel synthetic 5' and 3' untranslated regions (UTRs) which can be used in various combinations to modulate accumulation levels of transiently-expressed recombinant proteins. Using the pEAQ-HT expression vector as a point of comparison, we show that pre-existing expression systems can be improved by the deployment of rationally designed synthetic UTRs. Notably, we show that a suite of short, synthetic 5'UTRs behave as expression enhancers that outperform the HT 5'UTR present in the CPMV-HT expression system. Furthermore, we confirm the critical role played by the 3'UTR of cowpea mosaic virus RNA-2 in the performance of the CPMV-HT system. Finally, we use the knowledge obtained from these results to develop novel expression vectors (named pHRE and pHREAC) that equal or outperform pEAQ-HT in terms of recombinant protein yield. These new vectors are also domesticated for the use of certain Type IIS restriction enzymes, which allows for quicker cloning and straightforward assessment of different combinations of UTRs. CONCLUSIONS: We have shown that it is possible to rationally design a suite of expression modulators in the form of synthetic UTRs. We have created novel expression vectors that allow very high levels of recombinant protein expression in a transient expression context. This will have important consequences for future efforts to develop ever-better plant transient overexpression vectors for research or industrial applications.

10.
Annu Rev Phytopathol ; 57: 253-277, 2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31206351

RESUMO

Quantitative resistance (QR) to crop diseases has usually been much more durable than major-gene, effector-triggered resistance. It has been observed that the effectiveness of some QR has eroded as pathogens adapt to it, especially when deployment is extensive and epidemics occur regularly, but it generally declines more slowly than effector-triggered resistance. Changes in aggressiveness and specificity of diverse pathogens on cultivars with QR have been recorded, along with experimental data on fitness costs of pathogen adaptation to QR, but there is little information about molecular mechanisms of adaptation. Some QR has correlated or antagonistic effects on multiple diseases. Longitudinal data on cultivars' disease ratings in trials over several years can be used to assess the significance of QR for durable resistance in crops. It is argued that published data likely underreport the durability of QR, owing to publication bias. The implications of research on QR for plant breeding are discussed.


Assuntos
Resistência à Doença , Doenças das Plantas , Adaptação Fisiológica , Produtos Agrícolas , Humanos
11.
For Pathol ; 49(2): e12484, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31130819

RESUMO

We describe a method for inoculating rachises of Fraxinus excelsior (European or common ash) with Hymenoscyphus fraxineus, which is faster than previous methods and allows associated foliar symptoms to be assessed on replicate leaves. A total of ten ash seedlings were inoculated with five isolates of H. fraxineus and lesion development assessed over four weeks. A five-point disease progress scale of symptom development was developed from no lesion (0), lesion on rachis (1), "pre-top dead," with curling of distal leaflets and bending of the rachis (2), top dead, with wilting and death of distal leaflets (3) to leaf abscission (4). The method revealed variation in aggressiveness of H. fraxinus isolates and may be suitable for assessing the resistance of F. excelsior and other Fraxinus species to dieback. The in vitro growth rate of H. fraxineus isolates was highly correlated with both disease progress and the length of rachis lesions on susceptible plants, indicating that it can be used as a preliminary step in selecting isolates with high aggressiveness for use in resistance screening.

12.
Sci Rep ; 9(1): 6953, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061437

RESUMO

Yield stability is a major problem in oilseed rape with inter-annual variation accounting for between 30-50% of the crop value among the major global rapeseed producers. The United Kingdom has persistent problems with yield instability, but the underlying causes remain unclear. We tested whether temperature plays a role in UK winter oilseed rape (WOSR) yield variation through analysis of aggregated country-wide on-farm yield data and in annual Recommended List variety trial data run by the UK Agriculture and Horticulture Development Board (AHDB). Our analyses of the two independent datasets both show that mean temperature in early winter is strongly and uniquely linked to variation in WOSR yield, with a rise in mean temperature of 1 °C associated with an average reduction of 113 (+-21) kg ha-1 in yield. We propose that understanding the mechanism by which early winter chilling affects WOSR yield will enable the breeding of varieties with a more stable and resilient yield in Western Europe as climatic variation increases.


Assuntos
Agricultura , Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Estações do Ano , Temperatura , Sementes , Reino Unido
13.
Nat Ecol Evol ; 2(6): 1000-1008, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686237

RESUMO

Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome, which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.


Assuntos
Ascomicetos/genética , Fraxinus/microbiologia , Genoma Fúngico , Doenças das Plantas/microbiologia , Europa (Continente) , Haplótipos/genética
14.
Ann Bot ; 121(3): 415-430, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29309539

RESUMO

Background and Aims: Ramularia collo-cygni is an ascomycete fungus that colonizes barley primarily as a benign endophyte, although this interaction can become pathogenic, causing the disease Ramularia leaf spot (RLS). Factors, particularly reactive oxygen species, that resulted in the transition of the fungus from endophyte to necrotrophic parasite and the development of disease symptoms were investigated. Methods: Disease development in artificially inoculated seedlings of barley varieties varying in partial resistance to RLS was related to exposure to abiotic stress prior to inoculation. Histochemical and molecular analysis determined the effect of R. collo-cygni colonization on accumulation of reactive oxygen species and antioxidant gene expression. Development of RLS on barley lines defective in antioxidant enzymes and with altered redox status or non-functional chloroplasts was compared with the accumulation of fungal biomass to determine how these factors affect disease symptom expression. Key Results: Exposure to abiotic stress increased symptom development in all susceptible and most partially resistant barley varieties, in association with greater hydrogen peroxide (H2O2) levels in leaves. Decreased activity of the antioxidant enzymes superoxide dismutase and catalase in transgenic and mutant plants had no effect on the disease transition, whereas manipulation of H2O2 levels during asymptomatic growth of the fungus increased disease symptoms in most susceptible varieties but not in partially resistant plants. Barley mutants that undergo rapid loss of green leaf area when infected by R. collo-cygni or albino mutants with non-functional chloroplasts showed reduced development of RLS symptoms. Conclusions: These results imply that in seedlings the pathogenic transition of the normally endophytic fungus R. collo-cygni does not result from senescence as such, but rather is promoted by factors that result in changes to host reactive oxygen species. Barley varieties vary in the extent to which these factors promote RLS disease.


Assuntos
Ascomicetos , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/microbiologia , Ascomicetos/crescimento & desenvolvimento , DNA Fúngico/metabolismo , DNA de Plantas/metabolismo , Microscopia , Folhas de Planta/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Plant Biotechnol J ; 16(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436146

RESUMO

Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here, we present results demonstrating that endosperm Zn content can be enhanced through expression of a transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm-specific D-hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP-OES, compared to parental controls. Compared with Zn, transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross sections with the Zn-specific stain DTZ revealed a significant enhancement of Zn accumulation in the endosperm of two of three transformed lines, a result confirmed by ICP-OES in the endosperm of dissected grain. Synchrotron X-ray fluorescence analysis of longitudinal grain sections demonstrated a redistribution of grain Zn from aleurone to endosperm. We argue that this proof-of-principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética
16.
Mol Plant Pathol ; 18(2): 276-292, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27558898

RESUMO

An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple-sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well-adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade-offs in plant breeding when numerous traits are important and to be cautious about the use of non-adapted germplasm.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia , Cruzamento , Cromossomos de Plantas/genética , Resistência à Doença/genética , Suscetibilidade a Doenças , Marcadores Genéticos , Genótipo , Padrões de Herança/genética , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Fenótipo , Folhas de Planta/anatomia & histologia , Característica Quantitativa Herdável , Triticum/anatomia & histologia , Triticum/genética
17.
Funct Ecol ; 30(4): 649-657, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27546948

RESUMO

Experiments were conducted on the role of intra- and inter-genotypic competition in ecological processes operating at the population scale in diseased plant populations.Combinations of Arabidopsis thaliana genotypes showing variation for phenotypic traits relating to competitive ability and pathogen compatibility were infected with the oomycete Hyaloperonospora arabidopsidis and Turnip yellows virus in separate experiments. Plant fitness and competitive ability were estimated from phenotypic measurements.Pathogen-induced reduction in competitive ability for susceptible genotypes increased the competitive ability of resistant genotypes, resulting in maintenance of yield via competitive release. The two diseases had different effects on competitive interactions between plants. In experiments involving the oomycete, the highest yields were produced by mixtures of two weakly competing genotypes.The Arabidopsis model system has elucidated the ecological processes by which compensatory competitive interactions can increase the buffering capacity of plant populations under pathogen attack. Highly competitive genotypes may not maximize the productivity of the population as a whole, as they may over-yield at the expense of less competitive, more productive genotypes. The specific outcomes of competitive interactions cannot be generalized because they depend on the disease and the host genotypes.

18.
Crop Prot ; 85: 1-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27375312

RESUMO

Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming.

19.
Front Plant Sci ; 7: 742, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303429

RESUMO

Crops are attacked by many potential pathogens with differing life-history traits, which raises the question of whether or not the outcome of infection by one pathogen may be modulated by a change in the host environment brought on by infection by another pathogen. We investigated the host-mediated interaction between the biotroph Blumeria graminis f.sp. tritici (Bgt), the powdery mildew pathogen of wheat, and the necrotroph Zymoseptoria tritici, which has a long latent, endophytic phase following which it switches to a necrotrophic phase, resulting in the disease symptoms of Septoria tritici blotch. Both diseases are potentially severe in humid temperate climates and are controlled by fungicides and by growing wheat varieties with partial resistance. The compatible interaction between Z. tritici and the host reduced the number, size, and reproductive capacity of mildew colonies that a normally virulent Bgt isolate would produce but did not significantly alter the early development of Bgt on the leaf. The effect on virulent Bgt was elicited only by viable spores of Z. tritici. Notably, this effect was seen before the necrotic foliar symptoms induced by Z. tritici were visible, which implies there is a physiological interaction during the latent, endophytic period of Z. tritici, which either takes place directly between this fungus and Bgt or is mediated by the wheat leaf. Information on how different pathogens interact in host plants may allow plant breeders and others to improve the design of screening trials and selection of germplasm.

20.
Ecol Evol ; 6(9): 2790-804, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27066253

RESUMO

Investigating the origin and dispersal pathways is instrumental to mitigate threats and economic and environmental consequences of invasive crop pathogens. In the case of Puccinia striiformis causing yellow rust on wheat, a number of economically important invasions have been reported, e.g., the spreading of two aggressive and high temperature adapted strains to three continents since 2000. The combination of sequence-characterized amplified region (SCAR) markers, which were developed from two specific AFLP fragments, differentiated the two invasive strains, PstS1 and PstS2 from all other P. striiformis strains investigated at a worldwide level. The application of the SCAR markers on 566 isolates showed that PstS1 was present in East Africa in the early 1980s and then detected in the Americas in 2000 and in Australia in 2002. PstS2 which evolved from PstS1 became widespread in the Middle East and Central Asia. In 2000, PstS2 was detected in Europe, where it never became prevalent. Additional SSR genotyping and virulence phenotyping revealed 10 and six variants, respectively, within PstS1 and PstS2, demonstrating the evolutionary potential of the pathogen. Overall, the results suggested East Africa as the most plausible origin of the two invasive strains. The SCAR markers developed in the present study provide a rapid, inexpensive, and efficient tool to track the distribution of P. striiformis invasive strains, PstS1 and PstS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...